

HAEMATOLOGICAL AND BIOCHEMICAL CHARACTERISTICS OF BROILERS FED GRADED LEVELS OF DRY DISTILLED CASSAVA WITH SOLUBLE (DDCS)

BY

dele, O. J., Ajibogun, F. H. A., Otunla, T. A. and Olosunde, A. O.

Bioresources Development Centre Ogbomoso, National Biotechnology Development Agency, Abuja

PRESENTED AT

NIGERIAN SOCIETY FOR ANIMAL PRODUCTION(NSAP) 42ND ANNUAL CONFERENCE, 2017

INTRODUCTION

- Nigeria advocates the use of alternative and sustainable fuel source
- There is a need to research into the potential use of the waste product from this fuel industry
- Dry Distilled Cassava with Soluble (DDCS) is an unconventional feed a waste product from the fermentation and distillation process of cassava in ethanol production (Mahmud *et al.*, 2016)
- Adenkola *et al.*, 2011 reported the importance of dietary constituents and its effects on blood components and constituents
- Hence, this study was designed to evaluate the effect of graded levels of DDCS on the haematology and biochemical profiles of broiler of chickens

OBJECTIVES OF THE STUDY

- To determine the chemical composition of dry distilled cassava with soluble (DDCS)
- To evaluate the effect of graded levels of DDCS on the haematology and biochemical profiles of broiler of chickens.

MATERIALS AND METHODS

- **Experimental site:** The experiment was conducted at the poultry section of the Bioresources Development Centre (BIODEC), Ogbomoso
- **Experimental material:** The DDCS used in this study was obtained from Bioethanol Production Plant of National Biotechnology Development Agency (NABDA), located in BIODEC, Onipannu, Ogbomoso, Nigeria

SAMPLE PREPARATION

- The samples were collected into jute bags from ethanol production plant using the outlet faucet (hose) of the storage tank
- The water was allowed to drain out then sundried for two days and air dried for two days
- The processed samples were stored in a sack at room temperature prior to proximate analysis by standard methods (AOAC, 1990)
- **Experimental diets:** Four dietary treatments were formulated with 0, 4, 8 and 12% DDCS inclusion (Table 3)

Experimental animal and management

- One hundred and forty four (144) 5-week un-sexed Arbor acre strain broiler chicks were randomly allotted into four treatments with thirty six (36) birds per treatment
- The chicks were reared in brooder house for the first 28days (0 4 weeks) after which they were allotted to dietary treatments
- Each treatment was replicated twice in a completely randomized design
- At the end of the feeding trial, the birds were starved overnight so as to empty the crop
- Four birds were selected randomly, weighed and blood sample collected via jugular puncture
- 5ml of blood sample each was collected into well labeled plain and EDTA bottles

- The blood sample in the EDTA-containing bijou bottles were processed for haematology while those in bottles without EDTA were processed for biochemical analysis (Baker and Silverton, 1976; Mitruka and Rawnsley (1977))
- Data obtained were subjected to analysis of variance (ANOVA) using SAS Statistical Package, SAS 2008. The means were separated using Duncan multiple range test

RESULTS AND DISCUSSION

Table 1: Chemical composition of dry distilled cassava with soluble (DDCS)

Parameter	DDCS
Dry matter (DM)	85.52
Analysis % of DM	
Organic matter	94.54
Crude protein	9.88
Crude fibre	45.09
Ether extract	0.35
Ash	5.46
Nitrogen free extract	24.74

Parameter	DDCS
Saponin (%)	0.05
Alkaliod (%)	0.09
Flavonoid (%)	0.03
Tannin (mg/100g)	0.43
Polyphenol (mg/100g)	0.12
Cyanide (mg/kg)	15.14
Phytate (mg/g)	79.83
Oxalate (mg/g)	0.71

Table 2: Anti-nutritional factors of dry distilled cassava with Soluble (DDCS)

DDCS :Dry Distilled Cassava With Soluble

Ingredients	0%	4%	8%	12%
	DDCS	DDCS	DDCS	DDCS
Maize	54.75	54.75	54.75	54.75
Soybean meal	28.00	28.00	28.00	28.00
Wheat offal	12.00	8.00	4.00	-
DDCS	-	4.00	8.00	12.00
Bone Meal	3.00	3.00	3.00	3.00
Oyster shell	1.50	1.50	1.50	1.50
Salt	0.20	0.20	0.20	0.20
Vitamin Premix	0.25	0.25	0.25	0.25
Lysine	0.15	0.15	0.15	0.15
Methionine	0.15	0.15	0.15	0.15
Total	100.00	100.00	100.00	100.00
Calculated % CP	19.65	19.71	19.41	19.10
Metabolizable	2,874.22	2,789.42	2,714.62	2,639.82
energy (Kcal/Kg)				
Crude fibre (%)	3.73	4.97	6.17	7.38

Table 3: Gross Composition of experimental diets

DDCS : Dry Distilled Cassava With Soluble

Parameter	0%	4%	8%	12%	SEM	PROB
	DDCS	DDCS	DDCS	DDCS		
WBC(x10 ⁹ /L)	109.98	106.23	105.98	101.50	2.44	0.74
RBC (x 10 ¹² /L)	2.33	2.14	2.11	2.23	0.04	0.14
PCV (%)	30.25	30.33	29.75	31.33	0.71	0.92
MCV (fl)	119.38	121.03	121.93	122.93	0.65	0.26
MCHC (g/dL)	7.28	7.40	7.98	7.03	0.28	0.71
MCH (pg)	8.95	8.00	10.64	8.80	0.43	0.14

Table 4 : Hematological parameters of broilers fed graded levels of dry distilled cassava with soluble

^{a, b, c, d}: Means within each row with different superscript are significantly different (p < 0.05) SEM = Standard error of mean, PROB = Probability

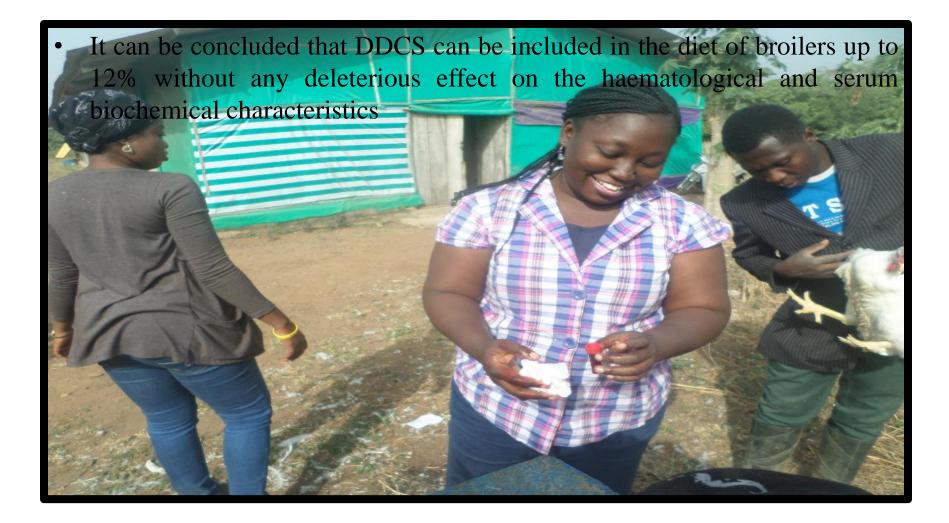

DDCS :Dry Distilled Cassava With Soluble

Table 5: Serum metabolites of broilers fed graded levels of dry distilled cassava with soluble

Parameter	0% DDCS	4% DDCS	8% DDCS	12% DDCS	SEM	PROB
Total protein (g/l)	34.50	38.33	33.25	30.00	1.31	0.28
Albumin (g/l)	9.28	10.70	10.93	13.13	0.65	0.24
Globulin (g/l)	25.23	27.63	22.33	16.90	1.43	0.10
Creatinine (umol/l)	46.25	71.33	61.00	51.00	5.39	0.42
AST (IU/L)	87.25	87.00	92.75	84.33	2.25	0.65
ALT (IU/L)	1.83	2.57	1.88	2.73	0.37	0.80
Cholesterol (mmol/L)	2.40	2.63	2.30	2.83	0.09	0.15
Tryglyceride (mmol/L)	0.43	0.27	0.43	0.23	0.04	0.26
HDL (mmol/L)	1.80	1.87	1.75	2.10	0.06	0.23
LDL (mmol/L)	0.41	0.67	0.35	0.63	0.07	0.24
Uric acid (mmol/L)	0.48	0.38	0.46	0.35	0.03	0.47

^{a, b, c, d}: Means within each row with different superscript are significantly different (p < 0.05) SEM = Standard error of mean, PROB = Probability DDCS :Dry Distilled Cassava With Soluble

Conclusion

Acknowledgment

The researchers would like to acknowledge the support of Prof. Lucy Jumai Ogbadu, DG/CEO, National Biotechnology Development Agency, Abuja, Nigeria

References

- Adenkola, A. Y., Idoga, E. S. and Tughgba, T. 2011. Comparative assessment of erythrocyte osmotic fragility and heamatological parameters of broiler and local chicken during the hot-dry season in Makurdi, Nigeria.Proceedings of 36th Annual Conference of *Nigerian Society of Animal Production*, University of Abuja, Nigeria. pp 117-119.
- Adeyemo, I. A. and Sani, A. 2013. Haematological parameters and serum biochemical indices of broilers chicken fed *Aspergillus niger* hydrolyzed cassava peel meal based diet. *International Journal of Recent Research Aspects*, 15(3), pp 410-415.
- Akinola, L. A. and Etuk, M. O. 2015. Haematological and Serum Biochemical Responses of Broilers Fed Varying Levels of Indomie Waste-Based Diets. *IOSR Journal of Agriculture and Veterinary Science* (IOSR-JAVS), Vol. 8(1), pp 66-70.
- Ari, M. M. and B. A. Ayanwale, B. A. 2014. Serum Profile and Growth Indices of Broilers Fed Diets Containing Alkaline Treated Soyabeans. *Asian Journal of Poultry Science*, 8: 9-15.
- Baker, F. J. and Silverton, R. E. (1976). Introduction to Medical Laboratory Technology, *Butterworth & Co. Ltd.*, 735pp.
- Mahmud, M., Maidala, A., Dantata, I. J. and Turaki, H. 2016. Blood Profile and Serum Biochemical Parameters of Broiler Chickens Fed Three Local Sorghum Varieties Grown in Bauchi State. *International Institute of Academic Research and Development*, pp 35-40.

- Mitruka, B. M. and Rawnsley, H. M. 1977. Clinical biochemical and Hematological reference values in normal experimental animals, New York, Masson, pp: 100 200.
- Owosibo, A.O., Odetola, O. M., Odunsi, O. O., Adejinmi, O. O. and Lawrence-Azua, O. O.
 2013. Growth, haematology and serum biochemistry of broilers fed probiotics based diets, *African Journal of Agricultural Research*, Vol. 8(41), pp. 5076-5081.
- Randox procedure, 2010. Randox procedure for standard biochemical procedures. Second edition. <u>www.randox.com</u>
- Reitman, S. and Frankel, S. 1957. Procedure for analysis of alanine amino transferase and aspartate amino transferase. *American Journal of Clinical Pathology, pp* 28:56.
- **Robertiello, A. 1981.** Upgrading of Agricultural and Agroindustrial waste: The treatment of distillery effluents (vinasse) in Italy. *Agriculture Waste*, 4:387.
- Trautwein, J., Chudaske, C., Roser, W. and Dusel, G. 2008. Effect of distilled dried grains with solubles, with or without supplementation of NSP-hydrolysing enzymes on broiler performance. Proceedings of the 10th Tagung Schweine und Geflugelernahrung, Halle/Saale, Germany, pp 123-125.
- Zanu, H. K, Adom, S. O. and Appiah-Adu, P. 2012. Response of cockerels to diets containing different levels of sheanut cake. *Agricultural Sciences Research Journals* Vol. 2(7), pp. 420 423.

THANK YOU FOR LISTEN